Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(12): 7909-7925, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37285134

RESUMO

We designed and synthesized analogues of a previously identified biofilm inhibitor IIIC5 to improve solubility, retain inhibitory activities, and to facilitate encapsulation into pH-responsive hydrogel microparticles. The optimized lead compound HA5 showed improved solubility of 120.09 µg/mL, inhibited Streptococcus mutans biofilm with an IC50 value of 6.42 µM, and did not affect the growth of oral commensal species up to a 15-fold higher concentration. The cocrystal structure of HA5 with GtfB catalytic domain determined at 2.35 Å resolution revealed its active site interactions. The ability of HA5 to inhibit S. mutans Gtfs and to reduce glucan production has been demonstrated. The hydrogel-encapsulated biofilm inhibitor (HEBI), generated by encapsulating HA5 in hydrogel, selectively inhibited S. mutans biofilms like HA5. Treatment of S. mutans-infected rats with HA5 or HEBI resulted in a significant reduction in buccal, sulcal, and proximal dental caries compared to untreated, infected rats.


Assuntos
Cárie Dentária , Streptococcus mutans , Ratos , Animais , Hidrogéis , Cárie Dentária/tratamento farmacológico , Biofilmes
2.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 5): 119-127, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37158310

RESUMO

Streptococcus mutans, found in the human oral cavity, is a significant contributor to the pathogenesis of dental caries. This bacterium expresses three genetically distinct types of glucosyltransferases named GtfB (GTF-I), GtfC (GTF-SI) and GtfD (GTF-S) that play critical roles in the development of dental plaque. The catalytic domains of GtfB, GtfC and GtfD contain conserved active-site residues for the overall enzymatic activity that relate to hydrolytic glycosidic cleavage of sucrose to glucose and fructose, release of fructose and generation of a glycosyl-enzyme intermediate in the reducing end. In a subsequent transglycosylation step, the glucosyl moiety is transferred to the nonreducing end of an acceptor to form a growing glucan polymer chain made up of glucose molecules. It has been proposed that both sucrose breakdown and glucan synthesis occur in the same active site of the catalytic domain, although the active site does not appear to be large enough to accommodate both functions. These three enzymes belong to glycoside hydrolase family 70 (GH70), which shows homology to glycoside hydrolase family 13 (GH13). GtfC synthesizes both soluble and insoluble glucans (α-1,3 and α-1,6 glycosidic linkages), while GtfB and GtfD synthesize only insoluble or soluble glucans, respectively. Here, crystal structures of the catalytic domains of GtfB and GtfD are reported. These structures are compared with previously determined structures of the catalytic domain of GtfC. With this work, apo structures and inhibitor-complex structures with acarbose are now available for the catalytic domains of GtfC and GtfB. The structure of GtfC with maltose allows further identification and comparison of active-site residues. A model of sucrose binding to GtfB is also included. The new structure of the catalytic domain of GtfD affords a structural comparison of the three S. mutans glycosyltransferases. Unfortunately, the catalytic domain of GtfD is not complete since crystallization resulted in the structure of a truncated protein lacking approximately 200 N-terminal residues of domain IV.


Assuntos
Cárie Dentária , Streptococcus mutans , Humanos , Domínio Catalítico , Cristalografia por Raios X , Glucosiltransferases/química , Glucose , Sacarose , Frutose , Glucanos
3.
Acta Crystallogr D Struct Biol ; 77(Pt 9): 1206-1215, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473090

RESUMO

Streptococcus gordonii is a member of the viridans streptococci and is an early colonizer of the tooth surface. Adherence to the tooth surface is enabled by proteins present on the S. gordonii cell surface, among which SspB belongs to one of the most well studied cell-wall-anchored adhesin families: the antigen I/II (AgI/II) family. The C-terminal region of SspB consists of three tandemly connected individual domains that display the DEv-IgG fold. These C-terminal domains contain a conserved Ca2+-binding site and isopeptide bonds, and they adhere to glycoprotein 340 (Gp340; also known as salivary agglutinin, SAG). Here, the structural and functional characterization of the C123SspB domain at 2.7 Šresolution is reported. Although the individual C-terminal domains of Streptococcus mutans AgI/II and S. gordonii SspB show a high degree of both sequence and structural homology, superposition of these structures highlights substantial differences in their electrostatic surface plots, and this can be attributed to the relative orientation of the individual domains (C1, C2 and C3) with respect to each other and could reflect their specificity in binding to extracellular matrix molecules. Studies further confirmed that affinity for Gp340 or its scavenger receptor cysteine-rich (SRCR) domains requires two of the three domains of C123SspB, namely C12 or C23, which is different from AgI/II. Using protein-protein docking studies, models for this observed functional difference between C123SspB and C123AgI/II in their binding to SRCR1 are presented.


Assuntos
Adesinas Bacterianas/química , Proteínas de Bactérias/química , Infecções Estreptocócicas/microbiologia , Streptococcus gordonii/metabolismo , Streptococcus mutans/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Relação Estrutura-Atividade
4.
J Bacteriol ; 203(20): e0017521, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34339301

RESUMO

Streptococcus intermedius, an oral commensal bacterium, is found at various sites, including subgingival dental plaque, purulent infections, and cystic fibrosis lungs. Oral streptococci utilize proteins on their surface to adhere to tissues and/or surfaces localizing the bacteria, which subsequently leads to the development of biofilms, colonization, and infection. Among the 19 genomically annotated cell wall-attached surface proteins on S. intermedius, Pas is an adhesin that belongs to the antigen I/II (AgI/II) family. Here, we have structurally and functionally characterized Pas, particularly focusing on its microbial-host as well as microbial-microbial interactions. The crystal structures of VPas and C123Pas show high similarity with AgI/II of Streptococcus mutans. VPas hosts a conserved metal binding site, and likewise, the C123Pas structure retains its conserved metal binding sites and isopeptide bonds within its three DEv-IgG domains. Pas interacts with nanomolar affinity to lung alveolar glycoprotein 340 (Gp340), its scavenger receptor cysteine-rich domains (SRCRs), and with fibrinogen. Both Candida albicans and Pseudomonas aeruginosa, the opportunistic pathogens that cohabitate with S. intermedius in the lungs of CFTR patients were studied in dual-species biofilm studies. The Pas-deficient mutant (Δpas) displayed significant reduction in dual-biofilm formation with C. albicans. In similar studies with P. aeruginosa, Pas did not mediate the biofilm formation with either the acute isolate (PAO1) or the chronic isolate (FRD1). However, the sortase A-deficient mutant (ΔsrtA) displayed reduced biofilm formation with both C. albicans and P. aeruginosa FRD1. Taken together, our findings highlight the role of Pas in both microbial-host and interkingdom interactions and expose its potential role in disease outcomes. IMPORTANCE Streptococcus intermedius, an oral commensal bacterium, has been clinically observed in subgingival dental plaque, purulent infections, and cystic fibrosis lungs. In this study, we have (i) determined the crystal structure of the V and C regions of Pas; (ii) shown that its surface protein Pas adheres to fibrinogen, which could potentially ferry the microbe through the bloodstream from the oral cavity; (iii) characterized Pas's high-affinity adherence to lung alveolar protein Gp340 that could fixate the microbe on lung epithelial cells; and (iv) most importantly, shown that these surface proteins on the oral commensal S. intermedius enhance biofilms of known pathogens Candida albicans and Pseudomonas aeruginosa.


Assuntos
Antígenos de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo , Streptococcus intermedius/metabolismo , Sequência de Aminoácidos , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas de Bactérias , Cálcio/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Pseudomonas aeruginosa/genética , Streptococcus intermedius/genética
5.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33397718

RESUMO

Macrodomains are proteins that recognize and hydrolyze ADP ribose (ADPR) modifications of intracellular proteins. Macrodomains are implicated in viral genome replication and interference with host cell immune responses. They are important to the infectious cycle of Coronaviridae and Togaviridae viruses. We describe crystal structures of the conserved macrodomain from the bat coronavirus (CoV) HKU4 in complex with ligands. The structures reveal a binding cavity that accommodates ADPR and analogs via local structural changes within the pocket. Using a radioactive assay, we present evidence of mono-ADPR (MAR) hydrolase activity. In silico analysis presents further evidence on recognition of the ADPR modification for hydrolysis. Mutational analysis of residues within the binding pocket resulted in diminished enzymatic activity and binding affinity. We conclude that the common structural features observed in the macrodomain in a bat CoV contribute to a conserved function that can be extended to other known macrodomains.


Assuntos
Adenosina Difosfato Ribose/química , Coronavirus/enzimologia , Pirofosfatases/química , Proteínas não Estruturais Virais/química , Animais , Sítios de Ligação , Quirópteros , Coronavirus/genética , Cristalografia por Raios X , Hidrólise , Pirofosfatases/genética , Proteínas não Estruturais Virais/genética
6.
Mol Oral Microbiol ; 36(1): 80-91, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33377315

RESUMO

Anti-sigma factors play a critical role in regulating the expression of sigma factors in response to environmental stress signals. PG1659 is cotranscribed with an upstream gene PG1660 (rpoE), which encodes for a sigma factor that plays an important role in oxidative stress resistance and the virulence regulatory network of P. gingivalis. PG1659, which is annotated as a hypothetical gene, is evaluated in this study. PG1659, composed of 130 amino acids, is predicted to be transmembrane protein with a single calcium (Ca2+ ) binding site. In P. gingivalis FLL358 (ΔPG1659::ermF), the rpoE gene was highly upregulated compared to the wild-type W83 strain. RpoE-induced genes were also upregulated in the PG1659-defective isogenic mutant. Both protein-protein pull-down and bacterial two-hybrid assays revealed that the PG1659 protein could interact with/bind RpoE. The N-terminal domain of PG1659, representing the cytoplasmic fragment of the protein, is critical for interaction with RpoE. In the presence of PG1659, the initiation of transcription by the RpoE sigma factor was inhibited. Taken together, our data suggest that PG1659 is an anti-sigma factor which plays an important regulatory role in the modulation of the sigma factor RpoE in P. gingivalis.


Assuntos
Porphyromonas gingivalis , Fator sigma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Fator sigma/genética , Fator sigma/metabolismo , Estresse Fisiológico , Virulência
7.
Protein Sci ; 29(12): 2446-2458, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058314

RESUMO

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is an evolutionarily conserved essential enzyme in the glycolytic pathway. GAPDH is also involved in a wide spectrum of non-catalytic cellular 'moonlighting' functions. Bacterial surface-associated GAPDHs engage in many host interactions that aid in colonization, pathogenesis, and virulence. We have structurally and functionally characterized the recombinant GAPDH of the obligate intracellular bacteria Chlamydia trachomatis, the leading cause of sexually transmitted bacterial and ocular infections. Contrary to earlier speculations, recent data confirm the presence of glucose-catabolizing enzymes including GAPDH in both stages of the biphasic life cycle of the bacterium. The high-resolution crystal structure described here provides a close-up view of the enzyme's active site and surface topology and reveals two chemically modified cysteine residues. Moreover, we show for the first time that purified C. trachomatis GAPDH binds to human plasminogen and plasmin. Based on the versatility of GAPDH's functions, data presented here emphasize the need for investigating the Chlamydiae GAPDH's involvement in biological functions beyond energy metabolism.


Assuntos
Proteínas de Bactérias/química , Chlamydia trachomatis/enzimologia , Gliceraldeído-3-Fosfato Desidrogenases/química , Modelos Moleculares , Plasminogênio/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Plasminogênio/metabolismo , Ligação Proteica
8.
Protein Sci ; 28(10): 1771-1784, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31342570

RESUMO

In the last step of glycolysis Pyruvate kinase catalyzes the irreversible conversion of ADP and phosphoenolpyruvate to ATP and pyruvic acid, both crucial for cellular metabolism. Thus pyruvate kinase plays a key role in controlling the metabolic flux and ATP production. The hallmark of the activity of different pyruvate kinases is their tight modulation by a variety of mechanisms including the use of a large number of physiological allosteric effectors in addition to their homotropic regulation by phosphoenolpyruvate. Binding of effectors signals precise and orchestrated movements in selected areas of the protein structure that alter the catalytic action of these evolutionarily conserved enzymes with remarkably conserved architecture and sequences. While the diverse nature of the allosteric effectors has been discussed in the literature, the structural basis of their regulatory effects is still not well understood because of the lack of data representing conformations in various activation states. Results of recent studies on pyruvate kinases of different families suggest that members of evolutionarily related families follow somewhat conserved allosteric strategies but evolutionarily distant members adopt different strategies. Here we review the structure and allosteric properties of pyruvate kinases of different families for which structural data are available.


Assuntos
Piruvato Quinase/química , Piruvato Quinase/metabolismo , Humanos , Conformação Proteica
9.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29685986

RESUMO

The high-resolution structure of glucan binding protein C (GbpC) at 1.14 Å, a sucrose-dependent virulence factor of the dental caries pathogen Streptococcus mutans, has been determined. GbpC shares not only structural similarities with the V regions of AgI/II and SspB but also functional adherence to salivary agglutinin (SAG) and its scavenger receptor cysteine-rich domains (SRCRs). This is not only a newly identified function for GbpC but also an additional fail-safe binding mechanism for S. mutans Despite the structural similarities with S. mutans antigen I/II (AgI/II) and SspB of Streptococcus gordonii, GbpC remains unique among these surface proteins in its propensity to adhere to dextran/glucans. The complex crystal structure of GbpC with dextrose (ß-d-glucose; Protein Data Bank ligand BGC) highlights exclusive structural features that facilitate this interaction with dextran. Targeted deletion mutant studies on GbpC's divergent loop region in the vicinity of a highly conserved calcium binding site confirm its role in biofilm formation. Finally, we present a model for adherence to dextran. The structure of GbpC highlights how artfully microbes have engineered the lectin-like folds to broaden their functional adherence repertoire.


Assuntos
Aderência Bacteriana , Proteínas de Transporte/fisiologia , Lectinas/fisiologia , Streptococcus mutans/fisiologia , Sacarose/farmacologia , Biofilmes , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/química , Cristalografia , Proteínas de Ligação a DNA , Dextranos/química , Lectinas/química , Receptores de Superfície Celular/química , Receptores Depuradores/química , Proteínas Supressoras de Tumor
10.
PLoS One ; 11(11): e0165917, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27875551

RESUMO

Glyceraldehyde 3-phosphate dehydrogenase or GAPDH is an evolutionarily conserved glycolytic enzyme. It catalyzes the two step oxidative phosphorylation of D-glyceraldehyde 3-phosphate into 1,3-bisphosphoglycerate using inorganic phosphate and NAD+ as cofactor. GAPDH of Group B Streptococcus is a major virulence factor and a potential vaccine candidate. Moreover, since GAPDH activity is essential for bacterial growth it may serve as a possible drug target. Crystal structures of Group B Streptococcus GAPDH in the apo-form, two different binary complexes and the ternary complex are described here. The two binary complexes contained NAD+ bound to 2 (mixed-holo) or 4 (holo) subunits of the tetrameric protein. The structure of the mixed-holo complex reveals the effects of NAD+ binding on the conformation of the protein. In the ternary complex, the phosphate group of the substrate was bound to the new Pi site in all four subunits. Comparison with the structure of human GAPDH showed several differences near the adenosyl binding pocket in Group B Streptococcus GAPDH. The structures also reveal at least three surface-exposed areas that differ in amino acid sequence compared to the corresponding areas of human GAPDH.


Assuntos
Proteínas de Bactérias/química , Gliceraldeído-3-Fosfato Desidrogenases/química , NAD/química , Streptococcus agalactiae/enzimologia , Apoenzimas/química , Holoenzimas/química , Humanos , Domínios Proteicos , Estrutura Quaternária de Proteína
11.
Protein Sci ; 25(12): 2113-2131, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27684934

RESUMO

Uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymatic function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. The adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. An overview of the current state of the knowledge on the structure-function relationship of D4 is provided here.


Assuntos
Poxviridae/enzimologia , Uracila-DNA Glicosidase/metabolismo , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Replicação do DNA/fisiologia , DNA Viral/biossíntese , DNA Viral/genética , Poxviridae/genética , Uracila-DNA Glicosidase/genética , Proteínas Virais/genética
12.
BMC Struct Biol ; 15: 10, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26031450

RESUMO

BACKGROUND: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. RESULTS: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This also represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. Comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. CONCLUSION: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.


Assuntos
DNA Viral/metabolismo , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/metabolismo , Vaccinia virus/enzimologia , Vaccinia virus/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Humanos , Modelos Moleculares , Fosfatos/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Homologia Estrutural de Proteína , Vaccinia virus/química , Proteínas Virais/química , Proteínas Virais/metabolismo
13.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 10): 1333-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286935

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a conserved cytosolic enzyme, which plays a key role in glycolysis. GAPDH catalyzes the oxidative phosphorylation of D-glyceraldehyde 3-phosphate using NAD or NADP as a cofactor. In addition, GAPDH localized on the surface of some bacteria is thought to be involved in macromolecular interactions and bacterial pathogenesis. GAPDH on the surface of group B streptococcus (GBS) enhances bacterial virulence and is a potential vaccine candidate. Here, the crystal structure of GBS GAPDH from Streptococcus agalactiae in complex with NAD is reported at 2.46 Šresolution. Although the overall structure of GBS GAPDH is very similar to those of other GAPDHs, the crystal structure reveals a significant difference in the area spanning residues 294-307, which appears to be more acidic. The amino-acid sequence of this region of GBS GAPDH is also distinct compared with other GAPDHs. This region therefore may be of interest as an immunogen for vaccine development.


Assuntos
Proteínas de Bactérias/química , Gliceraldeído-3-Fosfato Desidrogenases/química , Streptococcus agalactiae/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , NAD/química , Ligação Proteica , Estrutura Quaternária de Proteína , Homologia Estrutural de Proteína , Propriedades de Superfície
14.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 69(Pt 3): 295-301, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23519808

RESUMO

Amino-acid residues located at a highly flexible area in the uracil DNA glycosylase of Vaccinia virus were mutated. In the crystal structure of wild-type D4 these residues lie at the dimer interface. Specifically, three mutants were generated: (i) residue Arg167 was replaced with an alanine (R167AD4), (ii) residues Glu171, Ser172 and Pro173 were substituted with three glycine residues (3GD4) and (iii) residues Glu171 and Ser172 were deleted (Δ171-172D4). Mutant proteins were expressed, purified and crystallized in order to investigate the effects of these mutations on the structure of the protein.


Assuntos
Aminoácidos/química , Uracila-DNA Glicosidase/química , Vaccinia virus/química , Proteínas Virais/química , Sequência de Aminoácidos , Aminoácidos/genética , Cristalização , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Uracila-DNA Glicosidase/genética , Vaccinia virus/enzimologia , Vaccinia virus/genética , Proteínas Virais/genética
15.
Antimicrob Agents Chemother ; 55(11): 5054-62, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21844323

RESUMO

Poxvirus uracil DNA glycosylase D4 in association with A20 and the catalytic subunit of DNA polymerase forms the processive polymerase complex. The binding of D4 and A20 is essential for processive polymerase activity. Using an AlphaScreen assay, we identified compounds that inhibit protein-protein interactions between D4 and A20. Effective interaction inhibitors exhibited both antiviral activity and binding to D4. These results suggest that novel antiviral agents that target the protein-protein interactions between D4 and A20 can be developed for the treatment of infections with poxviruses, including smallpox.


Assuntos
Antivirais/farmacologia , Vaccinia virus/efeitos dos fármacos , Proteínas Virais/metabolismo , Linhagem Celular , DNA Glicosilases/metabolismo , Humanos , Ligação Proteica
16.
J Med Chem ; 54(9): 3260-7, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21438571

RESUMO

Smallpox was globally eradicated 30 years ago by vaccination. The recent threat of bioterrorism demands the development of improved vaccines and novel therapeutics to effectively preclude a reemergence of smallpox. One new therapeutic target is the vaccinia poxvirus processivity complex, comprising D4 and A20 proteins that enable the viral E9 DNA polymerase to synthesize extended strands. Five compounds identified from an AlphaScreen assay designed to disrupt A20:D4 binding were shown to be effective in: (i) blocking vaccinia processive DNA synthesis in vitro, (ii) preventing cellular infection with minimal cytotoxicity, and (iii) binding to D4, as evidenced by ThermoFluor. The EC(50) values for inhibition of viral infectivity ranged from 9.6 to 23 µM with corresponding selectivity indices (cytotoxicity CC(50)/viral infectivity EC(50)) of 3.9 to 17.8. The five compounds are thus potential therapeutics capable of halting smallpox DNA synthesis and infectivity through disruptive action against a component of the vaccinia processivity complex.


Assuntos
Aminofenóis/química , Antivirais/química , DNA Viral/biossíntese , Compostos Heterocíclicos de 4 ou mais Anéis/química , Varíola/prevenção & controle , Vaccinia virus/metabolismo , Proteínas Virais/antagonistas & inibidores , Aminofenóis/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Modelos Moleculares , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Ligação Proteica , Varíola/metabolismo , Relação Estrutura-Atividade , Vaccinia virus/genética , Vaccinia virus/patogenicidade , Ensaio de Placa Viral , Proteínas Virais/metabolismo
17.
Bioorg Med Chem ; 18(11): 4056-66, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20452776

RESUMO

Dihydrofolate reductase (DHFR) of the parasite Trypanosoma cruzi (T. cruzi) is a potential target for developing drugs to treat Chagas' disease. We have undertaken a detailed structure-activity study of this enzyme. We report here synthesis and characterization of six potent inhibitors of the parasitic enzyme. Inhibitory activity of each compound was determined against T. cruzi and human DHFR. One of these compounds, ethyl 4-(5-[(2,4-diamino-6-quinazolinyl)methyl]amino-2-methoxyphenoxy)butanoate (6b) was co-crystallized with the bifunctional dihydrofolate reductase-thymidylate synthase enzyme of T. cruzi and the crystal structure of the ternary enzyme:cofactor:inhibitor complex was determined. Molecular docking was used to analyze the potential interactions of all inhibitors with T. cruzi DHFR and human DHFR. Inhibitory activities of these compounds are discussed in the light of enzyme-ligand interactions. Binding affinities of each inhibitor for the respective enzymes were calculated based on the experimental or docked binding mode. An estimated 60-70% of the total binding energy is contributed by the 2,4-diaminoquinazoline scaffold.


Assuntos
Antagonistas do Ácido Fólico/química , Tetra-Hidrofolato Desidrogenase/química , Tripanossomicidas/química , Trypanosoma cruzi/enzimologia , Doença de Chagas/tratamento farmacológico , Simulação por Computador , Cristalização , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Antagonistas do Ácido Fólico/síntese química , Humanos , Ligação Proteica , Quinazolinas , Tripanossomicidas/síntese química , Tripanossomicidas/farmacologia
18.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 7): 704-16, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19564691

RESUMO

The flagellate protozoan parasite Trypanosoma cruzi is the pathogenic agent of Chagas disease (also called American trypanosomiasis), which causes approximately 50,000 deaths annually. The disease is endemic in South and Central America. The parasite is usually transmitted by a blood-feeding insect vector, but can also be transmitted via blood transfusion. In the chronic form, Chagas disease causes severe damage to the heart and other organs. There is no satisfactory treatment for chronic Chagas disease and no vaccine is available. There is an urgent need for the development of chemotherapeutic agents for the treatment of T. cruzi infection and therefore for the identification of potential drug targets. The dihydrofolate reductase activity of T. cruzi, which is expressed as part of a bifunctional enzyme, dihydrofolate reductase-thymidylate synthase (DHFR-TS), is a potential target for drug development. In order to gain a detailed understanding of the structure-function relationship of T. cruzi DHFR, the three-dimensional structure of this protein in complex with various ligands is being studied. Here, the crystal structures of T. cruzi DHFR-TS with three different compositions of the DHFR domain are reported: the folate-free state, the complex with the lipophilic antifolate trimetrexate (TMQ) and the complex with the classical antifolate methotrexate (MTX). These structures reveal that the enzyme is a homodimer with substantial interactions between the two TS domains of neighboring subunits. In contrast to the enzymes from Cryptosporidium hominis and Plasmodium falciparum, the DHFR and TS active sites of T. cruzi lie on the same side of the monomer. As in other parasitic DHFR-TS proteins, the N-terminal extension of the T. cruzi enzyme is involved in extensive interactions between the two domains. The DHFR active site of the T. cruzi enzyme shows subtle differences compared with its human counterpart. These differences may be exploited for the development of antifolate-based therapeutic agents for the treatment of T. cruzi infection.


Assuntos
Antagonistas do Ácido Fólico/química , Metotrexato/química , Complexos Multienzimáticos/química , Tetra-Hidrofolato Desidrogenase/química , Timidilato Sintase/química , Trimetrexato/química , Trypanosoma cruzi/enzimologia , Animais , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/enzimologia , Antagonistas do Ácido Fólico/metabolismo , Humanos , Metotrexato/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Especificidade por Substrato , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase/metabolismo , Trimetrexato/metabolismo
19.
BMC Struct Biol ; 7: 45, 2007 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-17605817

RESUMO

BACKGROUND: Uracil-DNA glycosylases (UDGs) catalyze excision of uracil from DNA. Vaccinia virus, which is the prototype of poxviruses, encodes a UDG (vvUDG) that is significantly different from the UDGs of other organisms in primary, secondary and tertiary structure and characteristic motifs. It adopted a novel catalysis-independent role in DNA replication that involves interaction with a viral protein, A20, to form the processivity factor. UDG:A20 association is essential for assembling of the processive DNA polymerase complex. The structure of the protein must have provisions for such interactions with A20. This paper provides the first glimpse into the structure of a poxvirus UDG. RESULTS: Results of dynamic light scattering experiments and native size exclusion chromatography showed that vvUDG is a dimer in solution. The dimeric assembly is also maintained in two crystal forms. The core of vvUDG is reasonably well conserved but the structure contains one additional beta-sheet at each terminus. A glycerol molecule is found in the active site of the enzyme in both crystal forms. Interaction of this glycerol molecule with the protein possibly mimics the enzyme-substrate (uracil) interactions. CONCLUSION: The crystal structures reveal several distinctive features of vvUDG. The new structural features may have evolved for adopting novel functions in the replication machinery of poxviruses. The mode of interaction between the subunits in the dimers suggests a possible model for binding to its partner and the nature of the processivity factor in the polymerase complex.


Assuntos
Uracila-DNA Glicosidase/química , Vaccinia virus/enzimologia , Proteínas Virais/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Dimerização , Escherichia coli/enzimologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
20.
Acta Crystallogr D Biol Crystallogr ; 63(Pt 5): 571-80, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17452782

RESUMO

Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate in the presence of Mg(2+) ions. The enzyme plays multiple cellular roles by maintaining a low dUTP:dTTP ratio and by synthesizing the substrate for thymidylate synthase in the biosynthesis of dTTP. Although dUTPase is an essential enzyme and has been established as a valid target for drug design, the high degree of homology of vaccinia virus dUTPase to the human enzyme makes the identification of selective inhibitors difficult. The crystal structure of vaccinia virus dUTPase has been solved and the active site has been mapped by crystallographic analysis of the apo enzyme and of complexes with the substrate-analog dUMPNPP, with the product dUMP and with dUDP, which acts as an inhibitor. Analyses of these structures reveal subtle differences between the viral and human enzymes. In particular, the much larger size of the central channel at the trimer interface suggests new possibilities for structure-based drug design. Vaccinia virus is a prototype of the poxviruses.


Assuntos
Pirofosfatases/química , Nucleotídeos de Uracila/química , Vaccinia virus/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...